// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2018 Intel Corporation #ifndef OPENCV_GAPI_GCPUKERNEL_HPP #define OPENCV_GAPI_GCPUKERNEL_HPP #include #include #include #include #include #include #include #include #include //to_ocv #include //suppress_unused_warning // FIXME: namespace scheme for backends? namespace cv { namespace gimpl { // Forward-declare an internal class class GCPUExecutable; } // namespace gimpl namespace gapi { namespace cpu { /** * \addtogroup gapi_std_backends * @{ * * @brief G-API backends available in this OpenCV version * * G-API backends play a corner stone role in G-API execution * stack. Every backend is hardware-oriented and thus can run its * kernels efficiently on the target platform. * * Backends are usually "back boxes" for G-API users -- on the API * side, all backends are represented as different objects of the * same class cv::gapi::GBackend. User can manipulate with backends * mainly by specifying which kernels to use or where to look up * for kernels first. * * @sa @ref gapi_hld, cv::gapi::lookup_order() */ /** * @brief Get a reference to CPU (OpenCV) backend. * * This is the default backend in G-API at the moment, providing * broader functional coverage but losing some graph model * advantages. Provided mostly for reference and prototyping * purposes. * * @sa gapi_std_backends */ GAPI_EXPORTS cv::gapi::GBackend backend(); /** @} */ } // namespace cpu } // namespace gapi // Represents arguments which are passed to a wrapped CPU function // FIXME: put into detail? class GAPI_EXPORTS GCPUContext { public: // Generic accessor API template const T& inArg(int input) { return m_args.at(input).get(); } // Syntax sugar const cv::gapi::own::Mat& inMat(int input); cv::gapi::own::Mat& outMatR(int output); // FIXME: Avoid cv::gapi::own::Mat m = ctx.outMatR() const cv::gapi::own::Scalar& inVal(int input); cv::gapi::own::Scalar& outValR(int output); // FIXME: Avoid cv::gapi::own::Scalar s = ctx.outValR() template std::vector& outVecR(int output) // FIXME: the same issue { return outVecRef(output).wref(); } protected: detail::VectorRef& outVecRef(int output); std::vector m_args; //FIXME: avoid conversion of arguments from internal representaion to OpenCV one on each call //to OCV kernel. (This can be achieved by a two single time conversions in GCPUExecutable::run, //once on enter for input and output arguments, and once before return for output arguments only std::unordered_map m_results; friend class gimpl::GCPUExecutable; }; class GAPI_EXPORTS GCPUKernel { public: // This function is kernel's execution entry point (does the processing work) using F = std::function; GCPUKernel(); explicit GCPUKernel(const F& f); void apply(GCPUContext &ctx); protected: F m_f; }; // FIXME: This is an ugly ad-hoc imlpementation. TODO: refactor namespace detail { template struct get_in; template<> struct get_in { static cv::Mat get(GCPUContext &ctx, int idx) { return to_ocv(ctx.inMat(idx)); } }; template<> struct get_in { static cv::Scalar get(GCPUContext &ctx, int idx) { return to_ocv(ctx.inVal(idx)); } }; template struct get_in > { static const std::vector& get(GCPUContext &ctx, int idx) { return ctx.inArg(idx).rref(); } }; template struct get_in { static T get(GCPUContext &ctx, int idx) { return ctx.inArg(idx); } }; struct tracked_cv_mat{ tracked_cv_mat(cv::gapi::own::Mat& m) : r{to_ocv(m)}, original_data{m.data} {} cv::Mat r; uchar* original_data; operator cv::Mat& (){ return r;} void validate() const{ if (r.data != original_data) { util::throw_error (std::logic_error ("OpenCV kernel output parameter was reallocated. \n" "Incorrect meta data was provided ?")); } } }; struct scalar_wrapper { scalar_wrapper(cv::gapi::own::Scalar& s) : m_s{cv::gapi::own::to_ocv(s)}, m_org_s(s) {}; operator cv::Scalar& () { return m_s; } void writeBack() const { m_org_s = to_own(m_s); } cv::Scalar m_s; cv::gapi::own::Scalar& m_org_s; }; template void postprocess(Outputs&... outs) { struct { void operator()(tracked_cv_mat* bm) { bm->validate(); } void operator()(scalar_wrapper* sw) { sw->writeBack(); } void operator()(...) { } } validate; //dummy array to unfold parameter pack int dummy[] = { 0, (validate(&outs), 0)... }; cv::util::suppress_unused_warning(dummy); } template struct get_out; template<> struct get_out { static tracked_cv_mat get(GCPUContext &ctx, int idx) { auto& r = ctx.outMatR(idx); return {r}; } }; template<> struct get_out { static scalar_wrapper get(GCPUContext &ctx, int idx) { auto& s = ctx.outValR(idx); return {s}; } }; template struct get_out> { static std::vector& get(GCPUContext &ctx, int idx) { return ctx.outVecR(idx); } }; template struct OCVCallHelper; // FIXME: probably can be simplified with std::apply or analogue. template struct OCVCallHelper, std::tuple > { template struct call_and_postprocess { template static void call(Inputs&&... ins, Outputs&&... outs) { //not using a std::forward on outs is deliberate in order to //cause compilation error, by tring to bind rvalue references to lvalue references Impl::run(std::forward(ins)..., outs...); postprocess(outs...); } }; template static void call_impl(GCPUContext &ctx, detail::Seq, detail::Seq) { //Make sure that OpenCV kernels do not reallocate memory for output parameters //by comparing it's state (data ptr) before and after the call. //This is done by converting each output Mat into tracked_cv_mat object, and binding //them to parameters of ad-hoc function //Convert own::Scalar to cv::Scalar before call kernel and run kernel //convert cv::Scalar to own::Scalar after call kernel and write back results call_and_postprocess::get(ctx, IIs))...>::call(get_in::get(ctx, IIs)..., get_out::get(ctx, OIs)...); } static void call(GCPUContext &ctx) { call_impl(ctx, typename detail::MkSeq::type(), typename detail::MkSeq::type()); } }; } // namespace detail template class GCPUKernelImpl: public detail::OCVCallHelper { using P = detail::OCVCallHelper; public: using API = K; static cv::gapi::GBackend backend() { return cv::gapi::cpu::backend(); } static cv::GCPUKernel kernel() { return GCPUKernel(&P::call); } }; #define GAPI_OCV_KERNEL(Name, API) struct Name: public cv::GCPUKernelImpl } // namespace cv #endif // OPENCV_GAPI_GCPUKERNEL_HPP